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Abstract

The effect of acoustic excitation on post-
stalled flows over an airfoil, i.e., flows that are
fully separated from near the leading edge, is

investigated. The excitation results in a tendency
towards reattachment, which is accompanied by an
increased lift and reduced drag, although the flow
may still remain fully separated. It is found that

with increasing excitation amplitude, the effect
becomes more pronounced but shifts to a Strouhal

number which is much lower than that expected from
linear, inviscid instability of the separated shear

layer.

Nomenclature

CQ lift co-efficient

c chord of airfoil

fp excitation frequency

Rc chord Reynolds number

St Strouhal number,	 fpc/U.

Su one dimensional spectrum of (u')

(U) mean velocity measured with a single

hot wire approximating (U2 + V2)1/2

U,V mean velocities	 in x,y directions,
respectively

(Um) maximum (U) just outside the boundary
layer

U. free-stream U

(u'),(uf)	 r.m.s. total and fundamental fluctua-

tion in the direction of (U), as meas-
ured by a single hot wire

(ur)	 =(ur2 + v,2)1/2

u',v',w'	 r.m.s. velocity fluctuations in x,y,Z
directions; Subscript r denotes values
at reference location

x' streamwise distance from leading edge

x,y,Z	 streamwise; transverse and spanwise
coordinates

y' transverse distance from airfoil sur-
face

a	 angle of attack

0	 momentum thickness

1. Introduction

The effect of acoustic excitation on flow sepa-
ration over airfoils was studied previously by sev-
eral investigators. 1 - 12 In Ref. 10, the general
effect over a large a-range was investigated
addressing such questions as the roles of the tun-
nel resonance and the instability of the boundary

layer in the process. Differences were observed in

the effect depending on the a-range. At low a,
laminar boundary layer separation occurred - a con-
dition which aggravated with decreasing Rc. It
was found subsequently, 17 that the laminar separ-
ation could be effectively reduced by a small ampli-
tude excitation, within the Rc range covered, when
the parameter St/Rc l/2 corresponding tofp fell
in the range, 0.02 to 0.03. In this case, the opti-
mum effect apparently occurred when the excitation

frequency matched the instability frequency of the

separated shear layer. Around the onset of static
stall (a = 15 0 ), for the airfoil under considera-
tion, a transitory stall occurred at an unusually
low frequency. 11 The effect of acoustic excitation

on this phenomenon was rather complex and depending
on the range of fp the low frequency oscillation
could either be augmented or suppressed. The exci-
tation under certain conditions in this case

actually decreased the lift coefficient. In compar-
ison, the excitation at large a, i.e., in the post-
stalled case, consistently increased the C Q but
the effect was noted to be strongly dependent on
the excitation amplitude.2,10

In the present paper, attention is focussed on
the post-stalled flows. As indicated earlier, these
flows are defined as ones that are fully stalled,
i.e., fully separated from near the leading edge.
In contrast to the laminar separation, the separated

shear layer in this case undergo transition to tur-
bulence while still over the airfoil, or, at suffi-
ciently high Rc, the separating boundary layer may
already be turbulent. However, the angle of attack

is large enough so that even the turbulent shear

layer cannot reattach. Most previous excitation

studies concerned the post-stall situation. A
review reveals an interesting anomaly. The Strouhal

number (St) corresponding to the effective excita-
tion is found to vary widely from experiment to
experiment. This is listed in Table 1. Note that

between Refs. 3 and 8, for similar Rc and airfoil,

there is an order of magnitude difference in the
effective St. Between Refs. 9 and 10 the results
may be extrapolated to yield an even larger differ-
ence in the effective St for comparable Rc.

It is apparent that "external" excitation pro-

duces the effect at high St whereas "internal"
excitation is effective at lower St. One excep-
tion is the result of Ref. 2. "External" excita-
tion typically involved acoustic irradiation with a
source away from the airfoil. 1-5,10- 12 "Internal"
excitation, on the other hand, involved direct
introduction of velocity perturbation in the flow
e.g., acoustically through slots on the airfoil, 5:, 7

by vibrating ribbon8 or by a vibrating wire placed

near the leading edge. 9 In general, a more pro-
found effect of the excitation was observed using

internal excitation.

The question that arises naturally is what is
the difference between the two methods that produce

the effect in such different ranges of St? In both
cases the perturbation has to act on the instability

of the separating shear layer. Nishioka et a1.5
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eloquently said, "The instability of the separated

shear layer is quintessential as the underlying

mechanism which enables the sound waves to suppress
the separation." However, the instability mechanism
responsible for the effect in the present case may

be complex due to the presence of the wall as well
as nonlinearity associated with the high amplitudes.
In fact, the main result of the present experiment
is an amplitude dependence of the excitation effect
as discussed in the following. It will be shown

that with increasing amplitude the effect is more

pronounced but shifts to a lower St, which,
although remaining unexplained reconciles the

anomaly noted above.

"External" excitation is used in the present
study but the amplitude is varied in a controlled

manner within the constraints of tunnel resonances

Parametric dependence of the excitation effect on

frequency and amplitude is studied for three
Reynolds numbers. The flow field for a specific

large amplitude excitation case is then documented

in detail.

2. Experimental Facility

The experiments are carried out in the NASA
Lewis Research Center Low Speed Wind tunnel, which
has been described in detail in Refs. 11 and 12.

The schematic of the test section is reproduced
from Ref. 12 as Fig. 1. The maximum tunnel speed
is about 12 m/sec with free stream turbulence inten-
sity less than 0.1 percent. A two-dimensional air-

foil (LRN (1)-1007) with chord c = 12.7 cm and
aspect ratio of six is used in the experiment; the
cross-sectional shape of the airfoil is shown by the

inset in Fig. 2. Two acoustic drivers and a 40.6 cm
woofer are used for the excitation, covering a wide

frequency range of 15 Hz to 15 kHz. Only one
speaker is used at a time; for fp < 700 Hz the
woofer is used, for fp > 700 Hz one of the acoustic
drivers is used. A crossed hot-film probe (DISA
55853) is used to measure velocity fluctuation

amplitudes (u' and v'), at a reference location

about 0.4c upstream of the airfoil leading edge.
The resultant of u' and v' measured at this

fixed location is denoted as the reference ampli-
tude parameter (ur), which is expressed as per-

centage of U.. A computer controlled traversing
mechanism is used to move a single hot wire to meas-

ure the velocity field around the airfoil. The
coordinate origin is at the tunnel midheight (y = 0)
and midspan (z = 0) and at the airfoil midchord
(x = 0). For convenience, the streamwise coordinate
(x') for some data has been referenced to the air-
foil leading edge. Lift is measured by a balance

mechanism; for further details of the experimental
procedure the reader may consult Refs. 11 and 12.

Its and Discussion

3.1 Amplitude Effect

First, let us briefly review the essential fea-

tures of the tunnel resonance characteristics, the
data on which have been presented in Ref. 12. At
low fp longitudinal resonances are encountered.

Thus, Tor fp < 280 Hz, primarily u' fluctuations
are induced which are uniform over the tunnel cross
section. With increasing fp increasingly complex
resonances occur characterized by nonuniform ampli-
tude distributions over a given cross section of the

tunnel. However, well defined excitation conditions

are achieved at certain higher fp's. One such case
is at the fundamental cross resonance at 342 Hz.
Large v', uniform in the spanwise direction, is

induced at this fp in the vicinity of the airfoil.
Because of the availability of large amplitudes,
some detailed measurements were conducted at
this fp.

Figure 2 shows the lift coefficient (Cg, ) varia-
tion with the angle of attack (a) with and without

excitation at 342 Hz. The amplitude of excitation
is large and the lift is found to increase over the
entire a-range covered. For the flow under consid-

eration, the low frequency transitory stall is

induced by the excitation approximately in the
a range of 14 0 to 16 0 ; this is accompanied by an
unusual increase in the C Q . 11 However, in this
paper the excitation effect is studied for the fully
stalled condition which occurs in the range

a > 16°.

The excitation amplitude effect is shown for
several a in Fig. 3. Large gains are achieved at
the lower a but the effect diminishes with

increasing a. Nevertheless, perceptible increase
in CQ occurs even at a = 30 1 . Note the "satura-
tion" and the subsequent "breakdown" in CQ with

increasing amplitude in the range 16 0 < a < 200.
This aspect will be further addressed in section
3.3.

For a = 18 0 , CQ versus (u'r) . was measured
for a large number of fp for a given Rc. Sample

data are.shown in Fig. 4 for three values of Rc.
The Strouhal number corresponding to each curve is

indicated. Several of the curves are terminated on
the right by the limitation in the available ampli-

tude from the loudspeaker in use. Inspection should
reveal that for constant amplitude at a given St,

comparable gains are achieved at all three Rc.

The variations of CQ with St are cross
plotted from data similar to those in Fig. 4, in

Figs. 5(a) to (c) for the three Rc. These are hand
smoothed curves through the data, some of the curves
at high amplitudes are based on only three data

points. However, it is clear that with increasing
amplitude large increase in CQ occurs but the

effect shifts progressively to lower St.

For the amplitudes covered the optimum increase
is found to occur in the range 2< St < 5. This St
range is substantially lower than the corresponding

range for the linear, inviscid instability of the
separated shear layer. The latter range can be
inferred from hot-wire surveys near the leading
edge. The time trace in Fig. 6(a) shows a high fre-
quency periodicity superimposed on the low frequency

fluctuations. The high frequency fluctuation cha-
racterizes the u'-spectrum by a broadband hump cen-

tered around 2 kHz as shown in Fig. 6(b). This
represents the (Kelvin-Helmholtz) instability fre-

quency of the separated shear layer for the flow
under consideration. Although there is subjective-
ness, this is a simple way to experimentally
determine the range of the shear layer instability
frequency; a similar method was also used in refer-

ences 6 and 13. The momentum thickness (0) of the
separated shear layer at x'/c = 0.03 was measured
to be 0.07 mm. The frequency 2 kHz thus corresponds
to a nondimensional value, f0/Um = 0.016. This
agrees with stability prediction for maximally

amplified disturbances for a zero pressure gradient
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shear layer. (As discussed later, the pressure gra-

dient in the separated, unexcited flow is indeed
small). Thus, the above data confirms that the

spectral hump around 2 kHz is due to the initial
shear layer instability.

Referring back to Fig. 5(b), one finds that
2 kHz corresponds to St = 30 (indicated by the

arrow) in contrast to the value St z 4 producing
the optimum effect. Obviously, for Rc = 10 5 in

Fig. 5(c) this difference should be even larger. A
similar observation was made in Ref. 13 for the
excitation effect on the separation bubble over the
blunt end of a cylinder placed parallel to the flow.

As to be discussed further in section 4, the excita-
tion was found to be effective when the forcing fre-

quency was much lower than the Kelvin-Helmholtz
instability frequency of the initial shear layer.

A similar trend was also observed in Ref. 5 for the
flow over a flat plate model at large a. Thus,
the linear instability of the separated shear layer
does not appear to be the primary mechanism through
which the optimum excitation effect is achieved.

Apparently, nonlinear effects play a significant

role. Viscous effects could also be important as
there is indication of a separation bubble near the

leading edge (section 3.3). No analysis is pre-
sently available to address the observed effects

satisfactorily.

The shift of the optimum effect to lower St
with increasing amplitude should explain the anomaly

discussed in section one. With "external" excita-
tion typically lower amplitudes are induced. For

example, in Refs. 1 and 10 it is estimated from the
sound pressure level data that approximately
0.1 percent amplitudes, in terms of. the present

notation ((ur)/U.) were used. One can roughly

estimate the amplitude to be close to 2 percent in
Ref. 2 for the data mentioned in Table 1. Thus,

the large effect at low St observed in the latter
work fits with the data trend found in the present
experiment. For the internal excitation cases none
of the references clearly provide velocity amplitude

data but it is reasonable to assume that they are
large.

3.2 Flow Field Detail

In the following flow field data are presented

for a case of excitation at Rc = 75 000, with

fp = 342 Hz and (ur)/Um = 1.5 percent. The mean

velocity profiles measured at different chordwise
locations on the upper surface are shown in Fig. 7.
These data are measured with a single hot-wire and
there is error due to hot-wire rectification in
regions of reverse flow near the wall. In the

range where (U)/(Um) < 0.5, the data have been cor-
rected by an algorithm which is chosen to roughly
approximate the probability distribution of reverse
flow in comparable flow fields. 14 The correction
function g(y) is defined as,

(Ucorrected ) _ (Umeasured ) r (1 - 2g(y')),

g (Y') = 1-1/(i+exp(2*((Y'0.5-Y )/Y'0.5x4-2)))

so that g(0) = 1 and 9(y'0 , 5) x 0. However, in

the range where the correction is done (indicated by

the shaded regions) the data should be considered

only as qualitative. The composite plot of Fig. 7

provides a perspective on the effect of the excita-
tion over the entire upper surface.

The corresponding r.m.s. fluctuation inten-

sity profiles are shown in Fig. 8. (Data corre-
sponding to the shaded regions of Fig. 7 should be
considered as qualitative). In both Figs. 7 and 8
the boundary layer is found to thicken near the
leading edge under the excitation. But downstream
of x'/c z 0.1, the effect of the excitation is to

reduce the transverse extent of the separated
region.

The locii of the 0.7(Um) point with and with-
out excitation, derived from profiles as in Fig. 7,

are shown in Fig. 9(a). The corresponding distribu-
tions of (Um) are shown in Fig. 9(b). The reduc-

tion in the separated region under the excitation
and the accompanied change in the (Um) distribu-

tion (and thus in the static pressure distribution)
should be clearly evident from these data. With

reference to the discussion on Fig. 6, note that
(Um) is practically constant shortly downstream of

the leading edge, thus indicating a near zero pres-
sure gradient for the separated flow in the
unexcited case.

It was noted in Fig. 8 that the fundamental
r.m.s. amplitude becomes very small downstream of

x'/c z 0.2. The amplitude (up (at 342) Hz was
measured along the 0.7(Um) points and shown in

Fig. 9(c). These data approximately represent the
(u')-maxima distribution. Clearly, the amplitude

becomes very large shortly downstream of the lead-
ing edge. The peak occurs at about 3 percent chord

location. But immediately downstream the flow
breaks own into turbulence obliterating the
fundamental.

The following point may be made based on the

data of Fig. 9(c). Consider the data trend of
Fig. 5(b) again. Recall that the initial shear

layer instability corresponds to St z 30 whereas
the optimum effect takes place at an order of magni-

tude lower St. One could hypothesize that the
large effect at the low St should be due to an
effective excitation of the thicker shear layer

downstream of the leading edge. This seemed plausi-
ble based on the knowledge of excitation effect on
free jets. In the latter case, it is known that
large amplitude excitation at frequencies much lower

than the initial shear layer instability frequency
can profoundly excite the jet. The lower frequency
disturbance is maximally amplified by the shear

layer downstream and apparently corresponds to the
linear instability of the thicker shear layer

there. 15 The fundamental amplitude in that case
grows to a maximum in the vicinity of that loca-
tion. It was thought that a similar effect might
be taking place in the present flow. However, the

data of Fig. 9(c) bears evidence to the contrary.
Clearly, the amplification is taking place right

around the leading edge rather than at a farther
downstream location.

Also shown in Fig. 9(c) are (uf) data for
the lower shear layer emanating from the trailing

edge. Obviously, the lower shear layer has also
been excited similarly as compared to the upper
one. However, it is reasonable to believe that

this has very little effect on the airfoil perform-
ance. Figure 9(a) clearly indicates that the mean

flow field is affected primarily in the upper shear
layer causing the observed improvement in the air-

foil performance.



Traces of the velocity signal at different
streamwise location are shown in Fig. 10. At each
x' the data represent the transverse location
where (uf) is approximately the maximum; the ver-

tical scale for each trace is the same. As the per-
turbation negotiates the leading edge the amplitude
grows rapidly. At x'/c = -0.05 the fundamental

(r.m.s.) is less than 2 percent of Um but becomes
nearly 40 percent at x'/c = 0.03. Note that at

the reference location, at x'/c = -0.4c, of/U.

1.5 percent but of/Um is nearly zero. But down-

stream of the leading edge of becomes large and

of must be nearly zero due to the proximity of

the wall. ((uf) should nearly equal 
of 

at

most measurement locations). Turbulent breakdown

is apparent at x '/c = 0.07 commensurate with the
data of Fig. 9. Figure 10 also indicate an absence

of significant vortex pairing activity. In both

references 5 and 13 evidence of vortex pairing was
reported. In the experiment on the effect of exci-
tation on the flow over a backward facing step,16
significant pairing activity was also noted. The
excitation amplitude in the present experiment is

apparently much larger and it is clear from Fig. 10
that the fundamental undergoes a large growth and

subsequent breakdown with no evidence of pairing
that would result in a frequency halving.

3.3 The "Saturation" in Lift Enhancement

Referring back to Fig. 3 recall that for the

low a cases the CQ, variation indicated a satura-

tion and subsequent breakdown with increasing exci-
tation amplitude. This behavior was investigated
further. The hot wire was placed at x'/c = 0.3
at a transverse location where the mean velocity

read was approximately 0.3U^. As the excitation
was turned on the separated shear layer was drawn
closer to the surface which manifested in an
increase in the mean velocity read by the hot wire.
The variation of the mean velocity, read at the
fixed location, with (u') is shown in Fig. 11.
Note that the variations

r
 for the three a cases

are commensurate with the data trends in Fig. 3.
The "breakdowns" in the curves occur at approxi-
mately the same amplitude levels. These data inde-
pendently confirm the trend observed in Fig. 3.

The airfoil was now held at a = 181 and the

flow field before and after the "breakdown", (at
amplitudes of 1.8 percent and 2.4 percent respec-

tively), were investigated. When switched from one
to the other amplitude, any anomaly in the operation

of the facility was looked for. All other parameters
appeared to remain the same. The spectra of the
reference velocity signals (ur and v') indicated

"pure tone" excitation at either amplitude with
higher harmonics no larger than 2 percent of the

fundamental. 12 Thus, the "breakdown" at the higher

amplitude was not due to some sort of distortion in

the imparted excitation.

For the two amplitudes, the locii of the
0.7(Um) points (as in Fig. 9(a)) as well as the

corresponding (uf), were measured. These data

are shown in Fig. 12. The (uf) variation does

not seem to shed any light as to why the lift
reduced at the higher amplitude. Not unexpectedly,

for the 2.4 percent amplitude, (uf) grows to a

higher level and stays high everywhere relative to
the other case. The Y0.7 data, however, clearly
show that the flow opens up downstream at the higher
amplitude reconciling with the observed reduction in
the lift. Near the leading edge, the y0.7 data

indicate the existence of a separation bubble which
is more prominent at the lower amplitude case. At
2.4 percent amplitude, the bubble appears to get

"squashed" which apparently leads to the change in

the aerodynamic characteristic of the suction sur-
face resulting in the lower lift.

4. Concluding Remarks

Experimental results on the effect of acoustic
excitation on post-stalled flows at large a are
summarized in this paper. It is shown that as the

amplitude of excitation is increased large increase
in the lift is achieved but the optimum effect

shifts progressively to lower Strouhal number. The
Strouhal number yielding the optimum effect can be

orders of magnitude lower than that corresponding to
the linear, inviscid instability of the separated
shear layer.

The flow field data show that the perturbation

is amplified shortly downstream of the leading edge
reaching a very high level. But farther downstream

the flow becomes turbulent and the fundamental at
the excitation frequency is hardly detectable. At

a values close to static stall condition, the
increase in the lift with increasing excitation

amplitude undergoes an abrupt "breakdown". This
behavior is found to be associated with a separa-

tion bubble, occurring under the excitation, near
the leading edge. At high excitation amplitude the
bubble is broken up or reduced in size resulting in
the observed "breakdown" in the lift.

As mentioned in the text, in a relevant experi-

ment on the separation bubble over the blunt end of
a cylinder placed parallel to the flow, 13 a similar

observation was made on the excitation effect. The
effective excitation, resulting in a smaller bubble

with accompanying reduction in drag, occurred at a

frequency which was much lower than the Kelvin-

Helmholtz instability frequency. It was hypothe-

sized that a separation bubble is characterized by
a "shedding type instability" whose frequency (fs)

scales with the bubble height (h) and the free-
stream speed outside the bubble (Um) such that
fsh/Um = 0.08. It was thought to be similar to vor-

tex shedding from a bluff body but due to the press
ence of the wall the interaction was with the "image
vortices" and thus, the nondimensional frequency was

roughly one-half that observed in the normal bluff
body shedding. The data indicated that the optimum

excitation effect took place when the nondimensional
frequency was 2 to 4 times higher than the value
noted above. The present results may be reviewed in
this light. Referring back to the velocity profile
at x'/c = 0.03 in Fig. 7, (h = 3 mm, Um z 1.6Um),
a nondimensional value of about 0.08 is obtained for

the effective frequency. This value, of course, is
subjective and should vary depending on the measure-
ment location but is interestingly close to the

value of the so called "shedding instability" fre-
quency. A separation bubble oscillation has been

reported by others also (e.g., Ref. 14). However,
the concept of an associated instability and its

role in the excitation process deserve further
investigation in the future.



The appearance of the separation bubble, which

is characteristic of low Rc flows, raises the
question if the inferences made from the present

experiment will be applicable at higher Rc. Refer-
ring back to section 1, one may classify the post-
stalled flows into two broad categories. (A) At

low Rc, the separated shear layer is initially lam-
inar, and (B) at high Rc, the separating shear

layer is already turbulent. Rc = 5x10 5 may be con-

sidered as the borderline, 17 although this depends

largely on the airfoil shape and the free-stream
conditions. The present experiment as well as most
of the ones listed in Table 1 deal with class A

flows. Certainly, the separation bubble must

involve initially laminar shear layer and thus the
observed "breakdown" in the lift must be character-

istic of only the class A flows.: However, the

experiment of Ref. 2 involved a class B flow, as a
boundary layer trip was used near the leading edge.
First, this proves that class B flows can also be

excited to improve airfoil performance. This should
not be surprising as there is ample proof that exci-
tation can significant)Y affect an initially fully

turbulent shear layer. 16,18 Secondly, for the

initially turbulent shear layer in class B flows

only high amplitude excitation may be expected to

be effective; thus, according to the results pre-
sented in this paper the effect may be expected to
occur only at low values of Strouhal number.
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Table 1. - Excitation Parameters From Previous Studies

Reference Airfoil a, Rcx10-5 Effective, Excitation
deg St type

Collins and NACA 20 to 24 5.3 28 to 94 External
Zelenevitz l 2412

Ahuja and -------- 16 5.0 2.7 External
Burring

Marchman Wortmann 15 2.0 27 External
et	 al. 3 FX63-137

Neubruger Wortmann 16 2.0 1.8 Internal
and FX63-137 vibrating
Wygnanski 8 ribbon

Hsiao NACA 18 to 24 0.2	 to 3.0 =2 Internal
et	 a1. 7 63-018 acoustic

Huang and -------- 15 to 20 0.35 =1 Internal
Maestrell06 acoustic

Nishioka Flat 8 to 14 0.4 3.8	 to 27 External
et	 al. 5 plate

Bar-Sever 9 LRN 20 1.5 1.5 Internal

vibrating
wire

Zaman LRN 18 to 22 0.4	 to 1.0 7 to 40 External
et a1.10
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(b)	 FRONT VIEW

FIGURE 1. - SCHEMATIC OF WIND TUNNEL TEST SECTION; DIMENSIONS ARE

IN CENTIMETERS.
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FIGURE 2. - C1 VERSUS a WITH AND WITHOUT EXCITATION.

EXCITATION AT fp = 342 Hz. <u'r>/U= = 1.5 PERCENT;
RC = 75 000.
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FIGURE 3. - CE VERSUS <u'r>/U „ FOR DIFFERENT a; fp = 342 Hz.

R,c = 75 000.
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FIGURE 4. - Cl VERSUS <u'r>/U„ FOR DIFFERENT St.

THE THREE SETS OF DATA ARE FOR INDICATED VALUES

OF Rc.
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(a) Rc = 50 000.	 (b) Rc = 75 000.

FIGURE 5. - Cl VERSUS St FOR DIFFERENT < u'r>/U,o. 	 FIGURE 5. - CONTINUED.
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	 0.05

0
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0	 .O8
f, SEC

(a) SAMPLE TIME TRACE.

0	 5
f, kHz

(b) TIME-AVERAGED SPECTRUM.

FIGURE 6. - <u>-FLUCTUATIONS NEAR THE HIGH SPEED EDGE OF

THE BOUNDARY LAYER AT x'/c = 0.03. a = 180 . Rc =

75 000, NO EXCITATION.
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FIGURE 7. - BOUNDARY LAYER PROFILES OF <U> AT DIF-

FERENT x'/c. SOLID LINES FOR UNEXCITED FLOW,

DASHED LINES FOR EXCITATION WITH f P = ,342 Hz AND

<u'r>/U,o = 1.5 PERCENT; a = 18 0, Rc = 75 000. IN

EACH SET, ORDINATE PERTAINS TO LOWEST PAIR AND OTHER

PAIRS ARE STAGGERED BY ONE MAJOR DIVISION.
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(a) LOCII OF 0.7 < UM> POINTS.
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FIGURE 8. - R.M.S. FLUCTUATION INTENSITY PROFILES

CORRESPONDING TO THE DATA OF FIG. 7. CHAIN-DASHED

LINES REPRESENT FUNDAMENTAL R.M.S. AMPLITUDE.
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(b) DISTRIBUTION OF <UM>.
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(c) FUNDAMENTAL R.M.S. AMPLITUDE AT THE 0.7 <UM>

POINTS.

FIGURE 9. - TIME AVERAGED MEAN AND FLUCTUATING VELOCITY

FIELDS ON THE SUCTION SURFACE: SAME FLOW AND EXCITA-

TION CONDITION AS IN FIG. 7.
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FIGURE 10. - TIME TRACES OF <u>-SIGNAL AT INDICATED

x'/C LOCATIONS FOR THE EXCITATION CASE OF FIG. 7.

AT EACH x', THE PROBE WAS LOCATED TO APPROXIMATELY

CAPTURE LARGEST FLUCTUATION AMPLITUDE.

a= /
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18a^ vi

/	 200	 1
3
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=8
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2
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FIGURE 11. - MEAN VELOCITY AT x'/c = 0.3 AND ABOUT O.1c ABOVE

THE SURFACE, AS A FUNCTION OF EXCITATION AMPLITUDE.

0	 .06	 .12	 .18	 .24

X' /c

FIGURE 12. - <u' f > AND THE LOCII OF 0.7 <UM> FOR TWO EX-

CITATION AMPLITUDES. SAME FLOW AS IN FIGS. 7 AND 9.
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